In English

This blog is written in Finnish and because of very big differences between Finnish and English languages, the translators may give and give (I have tested this) very strange translations. Some posts are posted on my personal English blog too.

tiistai 7. maaliskuuta 2017

Neutraalialkio filosofisesti eri kategorioina

Neutraalialkio filosofisesti eri kategorioina

- kuinka erityisesti nolla (0) on "oma lukunsa"



Tämä kirjoitus mm. konkretisoi edellisen kirjoituksen alahuomautusta. Varsinainen pointti on kuitenkin käsitteen neutraalialkio sinänsä pohtiminen – matemaattis-filosfisesti.

Sinänsä jo mahdollisimman yksinkertaisissa neutraalialkiotilanteissa on huomattava itse käsitteen neutraalialkio kannalta filosofis-kategorisesti jotain oleellisesti erilaista, tilannekohtaisesti. Tässä erityisesti voimakas, mutta niin kovin monessa mielessä unohdettu ja aliarvostettu ystävämme nolla (0), on reaaliluvun muodossa oleellisessa osassa.


Image courtesy of ddpavumba at FreeDigitalPhotos.net

Alla oleva tarkastelu rajoittuu reaalilukujen joukkoon.

Miksi kategorisesti neutraalialkiona nolla yhteenlaskun yhteydessä on oleellisesti eri kategoriaa, kuin kertolaskun yhteydessä reaaliluku 1 neutraalialkiona


Sinänsä jo pelkkänä ideana nolla on syvällisempi, monisyisempi sekä monintavoin voimakkaampi ja ”vaarallisempi” kuin idea yksi (1). Myös nyt erityisesti neutraalialkiona nolla edustaa kategorisesti jotain erilaista.

Yksi (1) neutraalialkiona

Olkoon a mielivaltainen reaaliluku. Nyt kaikille a (tapaukseen a = 0 suhtaudumme kuitenkin nyt varauksella) pätee 1 * a = a.

Mutta koska nollalle (0)  pätee lisäksi jokaiselle a toisaalta  0 * a = 0 joka tapauksessa perustuen nollan itsensä väkevään ominaisuuteen, niin lopulta luvun 1 neutraalialkioisuus tilanteessa a = 0 (tarkastelu 1 * a), ei välttämättä – jos ollenkaan – tarkoita samassa mielessä kuin muille reaaliluvuille a, että luku 1 on edes neutraalialkio tilanteessa 1 * 0.

Kertolaskun tapauksessa nollan käyttäytyminen sinänsä ”nollaavana” on jotenkin perustavalla tavalla niin voimakas, että se voi oleellisesti kyseenalaistaa, onko 1 neutraalialkio kertolaskun tapauksessa tilanteessa 1 * 0. Tosin oleellisesti näyttää laskennon näkökulmasta katsoen, että aina 1 * a = a. Tietysti voidaan ajatella, että on yhtä aikaa voimassa 1 * 0 = 0 siten, että 1 olisi samanarvoisesti neutraalialkio kertolaskun yhteydessä nollalle kuin muiden reaalilukujen kanssa ja toisaalta sitten lisäksi 0 * a = 0.

Tosin tämä olisi nollan mitätöimistä: ”Ilmiössä” 0 * a = 0 on perustavasti perustaen kyse perustavasta ideasta, mitä nolla on, niin voimakkaasti, että puhuminen yhdestä neutraalialkiona tapauksessa 1 * 0 = 0 voi olla keinotekoista – jopa virhe! Ilman filosofiaa, ilman kunnollista todella määriteltyä käsitystä nollasta, pelkkä laskennon lauseke 1 * 0 = 0 ei ole riittävä takaamaan, onko 1 todella neutraalialkio tässä kyseisessä tapauksessa.

Arkisesti ilmaistuna: Kun 1:n on kertolaskun tapauksessa määrä olla virallisesti neutraalialkio, niin onko kyse tosiasiassa määrävämmin siitä, että nolla "nollaa" ykkösen (1); sen sijaan, että 1 säilyttäisi nollan identiteetin, nolla säilyttääkin itse oman tietyn kategorisen identiteettinsä nollaamalla (kaikkien muiden reaalilukujen lisäksi) myös 1:n.

Toisin ilmaistuna, 1 ei primäärisesti matemaattis-filosofisesti ottaen säilytä nollan identiteettiä, vaan siis nolla säilyttää primäärisesti oman identiteettinsä perustavan määrävämmän oman ominaisuutensa puitteissa, so. "nollaamis"-ominaisuutensa.

Siis mikä merkityksellisintä: Onko matemaattis-filosofisesti kyse siis itseasiassa siitä, että nolla "neutralisoi" kyseisessä kertolaskussa luvun 1 neutraalialkio-ominaisuuden omalla "vahvemmalla" ja perustavammalla ominaisuudellaan ja vain näyttää, että yksi olisi ko. tilanteessa oleellisesti neutraalialkio. Toisaalta jotenkin "sekundäärisesti" yhden (1) voidaan ajatella olevan tilanteessa neutraalialkion kuitenkin. Toisaalta tätä voisi pitää nollan kannalta filosofisesti moraalisesti ottaen arvelluttavana, siksi erityisesti matemaattis-filosofisena virheenä jopa.

Nolla (0) neutraalialkiona, osa 1

Olkoon a mielivaltainen reaaliluku. Nyt kaikille a pätee 0 + a = a.

Nyt filosofisesti kiinnostava (”kriittinen”) tilanne on, kun a = 0. Kyseessä ei ole filosofisesti ”samanarvoinen” tilanne kuin muiden reaalilukujen.

Matemaattis-filosofisesti kategorisesti ottaen tämä on lisäksi eri kategorian tilanne kuin 1 * 1 = 1 tarkastellessa asiaa neutraalialkion näkökulmasta. Yhden tapauksessa yllä ”yksi on vain kerran itsensä”, nollan tapauksessa rakentamani ilmaisu on jo kummallinen (jopa toisaalta ”epäilyttävä”): ”Ei yhtään lisätään ”määrään” ei yhtään.

Pohdinnan lopputulema on, että kategorisesti neutraalialkiona nolla on ”voimakkaampi” kuin 1, koska
  • kun 1 näyttäisi olevan neutraalialkio nollalle samoin kuin muille reaaliluvuille, ei filosofisesti ottaen luku 1 sitä välttämättä ole, koska ”samaanaikaan” tai joka tapauksessa nollan itsensä ”voimakkaampi” yleinen ominaisuus takaa jo sinällään, että 1 * 0 = 0
  • Nolla itse neutraalialkiona yhteenlaskun yhteydessä on filosofisesti mahdollisesti ”kriittinen tapaus” ainoastaan nollan itsensä kanssa, tapaus 0 + 0 = 0, mikä toisaalta jo osoittaa, että neutraalialkiona nolla yhteenlaskun yhteydessä on kategorisesti erilainen, kuin puolestaan luku 1 neutraalialkiona kertolaskun yhteydessä. Edelleen, nollan neutraalialkioisuuden kanssa ainoa mahdollisesti ”kriittinen” tilanne tulee siis vain nollan itsensä kanssa, myös tässä
Nolla (0) neutraalialkiona, osa 2

”Matemaattinen pizza”-kirjoituksessa tuli esiin ongelma, että voisiko nolla itseasiassa olla positiivinen tai negatiivinen, jos nollaa pidetään positiivisena (mutta ei aidosti positiivisena) kokonaislukuna, jos nolla jaetaan negatiivisella reaaliluvulla.

Oppini mukaan nolla on positiivinen kokonaisluku vaikkakaan ei aidosti positiivinen, mutta jos nolla ei kuitenkaan todella ole toisaalta negatiivinen koskaan, niin nollan neutraalisuus on tällöin ”laajempaa” edelleen kuin esim. kertolaskun yhteydessä luvun 1.

Jos positiivinen nolla jaettuna negatiivisella reaaliluvulla ei tuota negatiivista nollaa, ”neutraloi” nolla lisäksi ainakin luvun negatiivisuuden (melkoinen ominaisuus positiiviselle kokonaisluvulle). Mutta jos nolla jaetaan aidosti positiivisella luvulla, nolla ”neutraloi” itseasiassa aidosti positiivisesta luvusta juuri positiivisuuden aitouden; osamäärän ollessa nolla (0), osamäärä ei voi olla aidosti positiivinen, koska nolla ei ole aidosti positiivinen.

Melkoinen pizza se nolla olisi, jos se voisi olla sekä positiivinen, aidosti positiivinen ja vieläpä toisaalta negatiivinen (mutta olisiko se sitä aidosti?).


Perus aritmetiikan näkökulmasta nolla edustaa sinällään selvästi jo kahden eri kategorian ”neutraalialkiota” (lainausmerkit edellä, koska jälkimmäinen "neutraalialkioisuus" on todella kategorisesti erilaista):

  • nolla yhteenlaskutilanteessa yhteenlaskettavana
  • nolla itse jaettuna millä hyvänsä reaaliluvulla (muulla kuin 0) ”neutraloi” ainakin jakajan negatiivisuuden (ellei sitten negatiivista nollaa todella ole olemassa), toisaalta jos nolla on positiivinen kokonaisluku, nolla jaettaessa aidosti positiivisella reaaliluvulla, neutralisoi aidosti positiivisen jakajan positiivisuuden aitouden

Nyt pääsemmekin edellisten postausten jatko-aiheeseen: Edellä on pyritty perustelemaan, miksi käsite neutraalialkio voi olla mielekästä ymmärtää eri kategorian käsitteinä.

Aliarvostettu ystävämme nolla (0) toisaalta voi olla myös muussa kuin ”laskennon” mielessä neutraali: Nollan neutraalisuus ilmenee väittämäni mukaan myös siten, että nolla ei ole parillinen tai pariton. Toisaalta nyt ”neutraalisuus” tarkoittaa kategorisesti täysin eri asiaa kuin neutraalialkio aiemmin: Kyse on matemaattis-filosofisesti ideasta nolla ilman kannanottoa, kuinka nolla toimii laskutoimitusten yhteydessä.

Yleisemmin ajatellen, jos voidaan hyväksyä, että nolla ei ole pariton tai parillinen, niin eräs ominaisuus, mikä tätä kuvaa, on neutraalisuus tai neutraalialkio kategorisesti muussa kuin totutussa mielessä.


Tämän kirjoituksen loppuhämmennyksenäni totean vielä seuraavaa: Pidän avoimena kysymyksenä, missä mielessä (matemaattis-filosofisesti kategorisesti ottaen) nolla on ylipäätään kokonaisluku, ottamatta kantaa sen mahdolliseen positiivisuuteen.